Lecture 26: Digital Signatures using RSA Assumption

Digital Signature

・白・・ヨ・・

3.⊁ 3

- Bob wants to receive encrypted messages. So, Bob fixes n, the number of bits in the primes he wants to choose. Bob picks two random n-bit primes p and q. Bob computes N = p ⋅ q. Bob samples a random e ∈ Z^{*}_{φ(N)}. Bob computes d ∈ Z^{*}_{φ(N)} such that e ⋅ d = 1 mod φ(N) using the extended GCD algorithm. Bob set pk = (n, N, e) and trap = d.
- The public-key for Bob pk is broadcast to everyone
- To encrypt a message m ∈ {0,1}^{n/2}, Alice runs the Enc_pk(m) algorithm defined as follows. Alice samples r ∈ {0,1}^{n/2} and computes c = (r||m)^e mod N. The cipher text is c.
- After receiving a cipher-text \tilde{c} , Bob runs the decryption algorithm $\text{Dec}_{pk,\text{trap}}(\tilde{c})$. Bob computes $(\tilde{r}, \tilde{m}) = \tilde{c}^d \mod N$.

ヘロア ヘロア ヘビア ヘビア

- Correctness. We have seen that this public-key encryption is always correct (relies on the fact that $gcd(e, \varphi(N)) = 1$)
- Security. We have seen that this public-key encryption scheme is secure as long as the randomness *r* used in every encryption algorithm is distinct against computationally bounded eavesdroppers (relies on the birthday bound and the RSA assumption)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Recall that we have seen that the function $f_e \colon \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ defined by $f_e(x) = x^e \mod N$ is a bijection that is efficient to evaluate. We shall abstract this concept as "Evaluation is efficient"
- Recall that the inverse function f_e⁻¹: Z_N^{*} → Z_N^{*} is efficient to evaluate given d, where e ⋅ d = 1 mod φ(N); otherwise, not. We shall abstract this concept as "Inversion is inefficient"
- In a public-key encryption we want that the "encryption algorithm is efficient" and "decryption algorithm is inefficient."
 So, we used the evaluation of f_e for encryption and the inversion of f_e for decryption.

(日)(同)(三)(三)(三)(三)

Digital Signature

- In a digital signature scheme, the signer publishes a public key pk and keeps a trapdoor trap with herself
- Later, if the signer wants to endorse a message m, then she uses an algorithm Sign_{pk,trap}(m) to generate a signature σ
- Everyone should be able to verify that "the publisher of the public-key pk endorses the message \widetilde{m} using the signature $\widetilde{\sigma}$ " by running the verification algorithm $\operatorname{Ver}_{\mathsf{pk}}(\widetilde{m}, \widetilde{\sigma})$ "
- An adversary who sees the public-key pk and a few message-signature pairs (m₁, σ₁), (m₂, σ₂), ..., (m_k, σ_k) cannot forge a valid signature σ' on a new message m'

- First observe that we want "verification to be efficient" and "signing to be inefficient"
- So, using the ideas in the "abstraction slide," the idea is to use "evaluation of f_e " for verification and "inversion of f_e " for signing

・ 同 ト ・ ヨ ト ・ ヨ ト

П

- Alice decides to endorse messages using *n*-bit primes. Alice picks two random *n*-bit prime numbers *p*, *q*. Alice computes *N* = *p* · *q* and samples a random *e* ∈ Z^{*}_{φ(N)}. Alice computes *d* such that *e* · *d* = 1 mod φ(*N*). Alice sets pk = (*n*, *N*, *e*) and trap = *d*
- To sign a message m ∈ {0,1}ⁿ, Alice runs Sign_{pk,trap}(m) defined as follows. Compute σ = m^d mod N.
- To verify a message-signature pair $(\tilde{m}, \tilde{\sigma})$, Bob runs the verification algorithm $\operatorname{Ver}_{\operatorname{pub}}(\tilde{m}, \tilde{\sigma})$ defined as follows. Output $\tilde{m} == \tilde{\sigma}^e \mod N$.

イロト イポト イヨト イヨト 二日

THIS SCHEME IS INSECURE!

Digital Signature

- 《 郡 》 《 문 》 《 문 》

э

- Pick any $\sigma' \in \mathbb{Z}_N^*$
- Compute $m' = (\sigma')^e \mod N$
- Note that this is an efficient attack
- Note that we did not even need to see any other message-signature pairs
- Although, we do not have any "control" over the message. It is a valid forgery, nonetheless

- We want to use the fact that in the previous forgery attack, the adversary did not have any control over the message that was being signed
- So, here is the idea underlying the fix. We shall pick a random r ∈ {0,1}^{n/2} and include r in the public-key pk. To sign a message m ∈ {0,1}^{n/2}, we compute (r||m) and compute the signature σ = (r||m)^d mod N. To verify a message-signature pair (m̃, σ̃), Bob (the verifier) checks (r, m̃) == (σ̃)^e mod N
- The formal scheme is presented next

・ 同 ト ・ ヨ ト ・ ヨ ト

$Gen(1^n)$:

- Pick random *n*-bit primes *p* and *q*.
- Compute N and $\varphi(N)$
- Sample $e \in \mathbb{Z}^*_{\varphi(N)}$
- Compute d such that $e \cdot d = 1 \mod \varphi(N)$
- Sample random $r \in \{0,1\}^{n/2}$
- Return pk = (n, N, e, r) and trap = d

(4 同) ト (1 日) (1 日)

Sign_{pk,trap}
$$(m)$$
:
• Return $(r||m)^d \mod N$

 $Ver_{pk}(\widetilde{m},\widetilde{\sigma}):$ • Return $(r \| \widetilde{m}) == \widetilde{\sigma}^e \mod N$

In the next lecture, we shall learn how to sign arbitrary-length messages $\textit{m} \in \{0,1\}^*$

▲御▶ ▲理▶ ▲理▶